Non-overlapping Distributed Tracking System Utilizing Particle Filter
نویسندگان
چکیده
Tracking people across multiple cameras is a challenging research area in visual computing, especially when these cameras have non-overlapping field of views. The important task is to associate a current subject with other prior appearances of the same subject across time and space in a camera network. Several known techniques rely on Bayesian approaches to perform the matching task. However, these approaches do not scale well when the dimension of the problem increases; e.g. when the number of subject or possible path increases. The aim of this paper is to propose a unified tracking framework using particle filters to efficiently switch between visual tracking (field of view tracking) and track prediction (non-overlapping region tracking). The particle filter tracking system utilizes a map (known environment) to assist the tracking process when targets leave the field of view of any camera. We implemented and tested this tracking approach in an in-house multiple cameras system as well as using on-line data. Promising results were obtained which suggested the feasibility of such an approach.
منابع مشابه
A New Modified Particle Filter With Application in Target Tracking
The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...
متن کاملParticle Filter Based Vehicle Tracking Approach with Improved Resampling Stage
Optical sensors based vehicle tracking can be widely implemented in traffic surveillance and flow control. The vast development of video surveillance infrastructure in recent years has drawn the current research focus towards vehicle tracking using high-end and low cost optical sensors. However, tracking vehicles via such sensors could be challenging due to the high probability of changing vehi...
متن کاملDistributed Computation Particle PHD filter
Particle probability hypothesis density filtering has become a promising means for multi-target tracking due to its capability of handling an unknown and time-varying number of targets in non-linear non-Gaussian system. However, its computational complexity grows linearly with the number of measurements and particles assigned to each target, and this can be very time consuming especially when n...
متن کاملAn Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm
In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...
متن کاملTarget Tracking Based on Distributed Cost - reference Particle Filtering Under Unknown Noise Statistics ⋆
Many recent works have addressed target tracking problem in wireless sensor networks. However, these methods rely on the assumptions of probabilistic models of the system noise and measurement noise. In this paper, we propose a distributed cost-reference particle filters (DCRPF) for target tracking in wireless sensor networks. The information of the noise statistics is not required and the nois...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- VLSI Signal Processing
دوره 49 شماره
صفحات -
تاریخ انتشار 2007